Skip to main content

Solving Simultaneous equation using matrix method

Solving Simultaneous equation  using matrix 

Method

Question: Find the values of  x and y in the equations below

3x+2y=6
5xy=8
Using matrix method

Put the equations in standard form and then use matrices to solve the system of equations.

3x+2y=6,5xy=8
Write the equations in matrix form

(3521)(xy)=(68)
Left multiply the equation by the inverse matrix of .
inverse((3521))(3521)(xy)=inverse((3521))(68)

The product of a matrix and its inverse is the identity matrix


(1001)(xy)=inverse((3521))(68)

Multiply the matrices on the left hand side of the equal sign.

(xy)=inverse((3521))(68)

For the  matrix , the inverse matrix is , so the matrix equation can be rewritten as a matrix multiplication problem.

(xy)=(3(1)2×513(1)2×553(1)2×523(1)2×53)(68)

Do the arithmetic.

(xy)=(1322136)

Extract the matrix elements  and 

x=1322,y=136






Comments

Post a Comment

Popular posts from this blog

How to find the vertical angle of the cone.

 A cone of height 9cm has a volume of ncm cube and a curved surface area of of ncm square. Find the vertical angle of the cone.   SOLUTION

Arithmetic Progression

How to calculate the common difference when the first term and the nth term is know.  Question: The 28th term of an AP is -5. Find the common difference if its first term is 31. Solution T1 = a ( First term of the sequence) a = 31 T28 = -5 (28th term of the sequence) d = ? (common difference) Recall the nth term formula of Ap i.e  Tn = a + (n-1)d        Substitute 28 for n to get the following equation        T28 = a + (28-1)d          T28     = a + 27d        Substitute T28 for -5 and 31 for a  in the equation above               -5     = 31 + 27d          Subtract 31 from both sides of the equation         -5 -31 = 27d          -36 = 27d        Divide through by 27        -36/27  =  27d/27 ...