How to calculate two APs with the same first term and last term but different common difference. Two APs have the same first and last terms. The first AP has 21 terms with a common difference of 9. How many terms has the other AP if its common difference is 4? Solution Since the first term and the last term of the two APs are the same So let their equal first and last terms be x and y Recall the nth term general formula of AP Tn = a +(n-1)d Solve for the first AP Tn = y (last term) a = x (First term) n = 21 (This is the number of terms) d = 9 (This is the common difference between terms) Substitute y, a, 21, and 9 for Tn, a, n, and d in the equation formula below Tn = a +(n-1)d y = x + (21-1)9 y = x +20 x 9 y = x + 180 ---------- eqn(1) Solve for the Second AP Tn = y (last term) a = x (First term) n = ? d = 4 (This is the common difference between terms) Substitute y, a, and 4 for Tn, a, and d in the equation formula below Tn = a +(n-1)d y = x + (n-1)4 y = x +4n
Tell us your mathematical challenge and we will be glad to assist you.